Giải Toán 12 Trang 68

  -  

+) Công thức lũy thừa: (left( a^m ight)^n = a^m.n;;;sqrt a^m = a^fracm2.)

+) Sử dụng công thức logarit: (a^log _ab = b; log _ab^n = nlog _ab;) (log _a^mb = frac1mlog _ab .)

Lời giải chi tiết:

(4^log _23 = left( 2^2 ight)^log _23 = left( 2^log _23 ight)^2 = 3^2 = 9).




Bạn đang xem: Giải toán 12 trang 68

LG b

b) (27^log_92);

Lời giải chi tiết:

(27^log _92 = left( 3^3 ight)^log _92 = 3^3.log _92 = 3^3log _3^22) ( = 3^3.frac12log _32 = 3^frac32.log _32) ( = left( 3^log _32 ight)^frac32 = 2^frac32 = left( sqrt 2 ight)^3= 2sqrt 2 )


LG c

c) (9^log_sqrt 3 2)

Lời giải bỏ ra tiết:

(9^log _sqrt 3 2 = left( left( sqrt 3 ight)^4 ight)^log_sqrt 3 2 ) ( = left( sqrt 3 ight)^4log _sqrt 3 2) (= left( left( sqrt 3 ight)^log_sqrt 3 2 ight)^4 = 2^4 )(= 16)

Cách khác:

(9^log _sqrt 3 2 = 9^log _3^ 1/22 = 9^frac11/2log _32 ) (= 9^2log _32 = left( 3^2 ight)^2log _32 = 3^4log _32 ) (= left( 3^log _32 ight)^4 = 2^4 = 16)


LG d

d) (4^log_827);

Lời giải bỏ ra tiết:

Có:

( mlo mg_8 m27 = log _2^33^3 ) (= displaystyle3 over 3.log _ 23 = mlo mg_2 m3)

Vậy (4^log _827 = left( 2^2 ight)^log _23 = left( 2^log _23 ight)^2 ) (= 3^2 = 9).

Loigiaitốt.com


*
Bình luận
*
Chia sẻ
Chia sẻ
Bình chọn:
4.5 bên trên 73 phiếu
Bài tiếp theo sau
*


Luyện Bài Tập Trắc nghiệm Toán thù 12 - Xem ngay


Báo lỗi - Góp ý
*
*
*
*
*
*
*
*



Xem thêm: Lịch Sử 11 Bài 15: Phong Trào Cách Mạng Ở Trung Quốc Và Ấn Độ (1918


TẢI APP ĐỂ XEM OFFLINE


*
*

Bài giải đang rất được quan liêu tâm


× Báo lỗi góp ý
Vấn đề em gặp gỡ yêu cầu là gì ?

Sai chủ yếu tả Giải cực nhọc phát âm Giải không nên Lỗi không giống Hãy viết cụ thể giúp Loigiaixuất xắc.com


Gửi góp ý Hủy vứt
× Báo lỗi

Cảm ơn chúng ta đã thực hiện Loigiaigiỏi.com. Đội ngũ giáo viên buộc phải nâng cao điều gì nhằm các bạn mang lại nội dung bài viết này 5* vậy?

Vui lòng vướng lại thông tin để ad rất có thể tương tác với em nhé!


Họ với tên:


Gửi Hủy vứt

Liên hệ | Chính sách

*



Xem thêm: Vẽ Tranh Đề Tài Cắm Trại Lớp 8, Vẽ Tranh Đề Tài : Trang Trí Lều Trại

*

Đăng ký kết nhằm nhấn giải thuật tốt cùng tư liệu miễn phí

Cho phép loigiaitốt.com gửi những thông tin cho chúng ta để nhận được các giải thuật tốt cũng tương tự tư liệu miễn tổn phí.