Một số bài toán khó lớp 7

  -  

Cho hàng số giải pháp đầy đủ u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tục của hàng là d.

Bạn đang xem: Một số bài toán khó lớp 7

+ Khi kia số những số hạng của dãy (*) là:
*
(1)
+ Tổng các số hạng của hàng (*) là:
*
(2)
+ điều đặc biệt từ phương pháp (1) ta hoàn toàn có thể tính được số hạng vật dụng n của hàng (*) là: un = u1 + (n - 1)dHoặc Khi u1 = d = 1 thì S1 = 1 + 2 + 3 + ...+ n = n(n + 1) /2 

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.

Xem thêm: Giải Bài Tập Toán Hình 11 Chương 2, Giải Bài Tập Toán 11 Hình Học

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)Hướng dẫn giảiCách 1:Ta thấy mỗi số hạng của tổng bên trên là tích của hai số thoải mái và tự nhiên thường xuyên, Lúc đó:Điện thoại tư vấn a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4…………………..an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)nan = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)Cộng từng vế của các đẳng thức bên trên ta có:3(a1 + a2 + … + an) = n(n + 1)(n + 2)3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒
*
Cách 2: Ta có3A = 1.2.3 + 2.3.3 + … + n(n + 1).33A = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)<(n - 2) - (n - 1)>3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)3A = n(n + 1)(n + 2)
*
* Tổng quát tháo hoá ta có:k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong số đó k = 1; 2; 3; …
Ta thuận tiện chứng tỏ cách làm trên nlỗi sau:k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)<(k + 2) - (k - 1)> = 3k(k + 1)Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)Hướng dẫn giảiÁp dụng tính thừa kế của bài 1 ta có:4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).44B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - <(n - 2)(n - 1)n(n + 1)>4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
*
Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)Hướng dẫn giảiTa thấy: 1.4 = 1.(1 + 3)2.5 = 2.(2 + 3)3.6 = 3.(3 + 3)4.7 = 4.(4 + 3)…….n(n + 3) = n(n + 1) + 2nVậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2nC = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2nC = <1.2 +2.3 +3.4 + … + n(n + 1)> + (2 + 4 + 6 + … + 2n)⇒ 3C = 3.

Xem thêm: Xem Phim One Piece Vua Hải Tặc Tập 201 Vietsub + Thuyết Minh Full Hd

<1.2 +2.3 +3.4 + … + n(n + 1)> + 3.(2 + 4 + 6 + … + 2n)3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)3C = n(n + 1)(n + 2) +
*
⇒ C =
*
+
*
=
*
Bài 4: Tính D = 12 + 22 + 32 + .... + n2Hướng dẫn giảiNhận xét: Các số hạng của bài 1 là tích của nhị số tự nhiên và thoải mái thường xuyên, còn sinh hoạt bài bác này là tích của nhị số tự nhiên giống nhau. Do kia ta gửi về dạng bài bác tập 1:Ta có:A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)Mặt không giống theo bài xích tập 1 ta có:
*
và 1 + 2 + 3 + .... + n =
*
⇒D = 12 + 22 + 32 + .... + n2 =
*
Bài 5: Tính E = 13 + 23 + 33 + ... + n3Hướng dẫn giảiTương trường đoản cú bài bác tân oán sống trên, xuất phát điểm từ bài xích tân oán 2, ta gửi tổng B về tổng E:B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)
B = (23 - 2) + (33 - 3) + .... + (n3 - n)B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)B = (13 + 23 + 33 + ... + n3) -
*
⇒ 13 + 23 + 33 + ... + n3 = B +
*
*
⇒ E = 13 + 23 + 33 + ... + n3 =
*
+
*

MỘT SỐ BÀI TẬP NÂNG CAO TOÁN 7 DẠNG KHÁC

Bài 1. Tính S1 = 1 + 2 + 22 + 23 + … + 263Lời giảiCách 1:Ta thấy: S1 = 1 + 2 + 22 + 23 + … + 263 (1)2S1 = 2 + 22 + 23 + … + 263 + 264 (2)Trừ từng vế của (2) mang đến (1) ta có:2S1 - S1 = 2 + 22 + 23 + … + 263 + 264 - (1 + 2 + 22 + 23 + … + 263)= 264 - 1. Hay S1 = 264 - 1Cách 2:Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1Tài liệu vẫn còn..........----------------------------------------------------------------------Mời các bạn cài đặt về để xem toàn thể Các dạng toán thù cải thiện lớp 7. Hy vọng tư liệu này sẽ giúp đỡ các em học viên cải thiện tài năng giải bài tập Toán thù 7. Ngoài ra, mời chúng ta xem thêm tài liệu sau: Toán lớp 7, Giải bài tập Tân oán lớp 7, Tài liệu học hành lớp 7, Đề thi thân kì 1 lớp 7, Đề thi học kì 1 lớp 7Bộ đề ôn tập Toán lớp 7100 thắc mắc ôn tập môn Toán lớp 7bài tập về số hữu tỉ