7 HẰNG ĐẲNG THỨC LỚP 8

  -  

Những hằng đẳng thức đáng nhớ chắc thân quen gì với chúng ta . Hôm nay Kiến vẫn nói kỹ hơn về 7 hằng đẳng thức đặc biệt quan trọng : bình phương của một tổng, bình pmùi hương của một hiệu, hiệu của nhì bình phương, lập pmùi hương của một tổng, lập phương thơm của một hiệu, tổng hai lập pmùi hương với ở đầu cuối là hiệu nhì lập phương thơm. Các bạn cùng xem thêm nhé.

Bạn đang xem: 7 hằng đẳng thức lớp 8

A. 7 hằng đẳng thức xứng đáng nhớ

1. Bình phương của một tổng

Với A, B là những biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta tất cả x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.

*

3. Hiệu nhì bình phương

Với A, B là những biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).

*

4. Lập phương thơm của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.

*

5. Lập phương thơm của một hiệu.

Với A, B là các biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.

Ví dụ :

a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3bên dưới dạng lập phương thơm của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3

= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13

= 8x3- 12x2+ 6x - 1

b) Ta bao gồm : x3- 3x2y + 3xy2- y3

= ( x )3- 3.x2.y + 3.x. y2- y3

= ( x - y )3

6. Tổng nhì lập phương

Với A, B là những biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).

Crúc ý: Ta quy ước A2- AB + B2là bình pmùi hương thiếu hụt của hiệu A - B.

Xem thêm: Luyện Tập Viết Đoạn Văn Thuyết Minh Lớp 10 Trang 62, Soạn Bài Luyện Tập Viết Đoạn Văn Thuyết Minh

Ví dụ:

a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) dưới dạng tổng nhị lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.

7. Hiệu nhì lập phương

Với A, B là những biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).

Chụ ý: Ta quy ước A2+ AB + B2là bình phương thơm thiếu của tổng A + B.

Ví dụ:

a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta có : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.

B. những bài tập từ luyện về hằng đẳng thức

Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

Hướng dẫn:

a) Áp dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.

( a - b )( a + b ) = a2- b2.

lúc đó ta có ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0

⇔ x3- x3+ 4x - 27 = 0

⇔ 4x - 27 = 0

Vậy x=

*
.

Xem thêm: Cách Ghi Nhớ Nhanh Thần Tốc, Nhớ Siêu Lâu, Vượt Qua Mọi Kỳ Thi

b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3

( a + b )3= a3+ 3a2b + 3ab2+ b3

( a - b )2= a2- 2ab + b2

khi đó ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10

⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10

⇔ 12x = - 6

Vậy x=

*

Bài 2:Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2– (2y)2–

A = x2– 4y2– x2+ 4xy - 4y22

A = -8y2+ 4xy

Hãy ghi nhớ nó nhé

*

Những hằng đẳng thức đáng nhớ trên khôn cùng đặc biệt tủ kiến thức và kỹ năng của chúng ta . Thế đề xuất các bạn hãy phân tích cùng ghi nhớ nó nhé. Những đẳng thức đó giúp họ giải pháp xử lý những bài xích toán dễ dàng với cực nhọc một cách tiện lợi, chúng ta cần có tác dụng đi làm lại để bản thân hoàn toàn có thể vận dụng tốt hơn. Chúc chúng ta thành công xuất sắc và cần mẫn trên tuyến phố học tập. Hẹn các bạn làm việc số đông bài bác tiếp theo